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The differential game of guiding a conflict-controlled motion onto a given set is con- 

sidered. The sufficient conditions for winning the game are established. These are 
obtained by extending the conditions previously established for systems with additively 
separated controls to the case of mixed controls. The study is a continuation of fl-14l. 

1. Statement of the problem. Let us consider the system described by the 

equation ax/L2 = f (t, 59 7.4 4 (I.11 

where z is the n-dimensional phase vector of the system; u, v are the r-dimensional 
control vectors at the discretion of the first and second players, respectively, and resuic- 

ted by the conditions UE P, VEQ (1. .2) 

where P and Q are bounded closed sets; the vector function f (t, z, U, v) is continu- 
ous in all its arguments and satisfies the Limchitz conditions in the variable z. The ini- 

tial position {t,, zo} and the closed set M in the space {x) ‘(i. e. the target) are given, 

The strategies U and V of the first and second player are defined by the systems of sets 

(p (du) &I, rt and {” (dv)} , I, %). These sets consist of the regular normed measures 
p (du) and v (dv) on P and Q , respectively. Each possible position {t, z} is associated 
with a set {p (du)},,,,, which defines U and with a set {v (dv)},t, sb which defines v. 

The motion z [t] = z [t, t,, z,; U, VI of system (1.1) generated in the interval 
It,,, 41 by the strategies y. ‘v from the initial position &?_ xal is defined as any 
function z [tl (to < t < 8) which is a uniform limit as A + 0 for the subsequences 

of continuous Euler broken lines zA [t] Satisfying the equation 

xi -_ 
ss f (t, XA [t], u, v) p @U)(T~, XA[Si]}v tdv) (‘i, =A[+ (1.3) 

(Zi ;T-< ri+lr zi-l- q&A\, z,,= to, XA [tOI = 50) 

where p (dr&, xl9 V (dV)(:, A are some (arbitrary) elements from the sets 

{p (du) >I?, X)Y {v (du) >{T, Cc)* 
We say that the strategy U”guarantees the encounter of object (1.1) with the target 

M by the instant 6 if every motion z [ t] = x [t, to, x0; IT, V] intersects M at least 
once for to < t & 6 for every strategy $‘., The problem consists in determining the 
conditions under which the strategy v” exists, and in constructing this strategy. 

The results of 1141 imply that the following alternatives exist for every position 

Cto. 101 : either there exists a strategy CI” which guarantees encounter by a given instant 
ii, or there exists a strategy Vo which guarantees the deviation of every motion a$t] = 
= zlt, to+; U,_ vql from M for all t0 Q t B 6. 

The first of these alternatives is realized if and only if the point z. lies in some 
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positional absorption set W(te. 3,). 
Paper p4] contains two ways of describing this set : ( I*)- .is a description based on the 

notion of positional absorption of the target M ; (2) is a description based on a reversed 
construction which pushes off from M at the instant 6 and develops in the direction of 
decreasing time z until an instant ta < 6. Both descriptions are generally ineffective. 

We shall formulate sufficient conditions whose fulfillment means that the sets w(t,, 
#) can he replaced by the program absorption sets W,&, 8) whose initial description 
is coarser. The constructions previouslydescribedfor syst&ns with separated controls II 
and u (e. g. see nl, 121) can then be extended to Eq. (1.1). 

2. Prrrrrt rb8orptlon mts. We call the strategies U = U, and 7 = Y, 
“preset controls” if the sets (p)@scr and (~)it,~) which define them depend oniy on’& 
i. e. if they are the sets (p (du)}, ti. {L (dv)} f, We say that process (2.1) “preset- 
absorbs” the target Nat an instant 6 3, t, from the position {t*, Xo) if, whatever the 
preset can001 V,. there exists a preset ~~lU~5~ that at least one motion 5 ft] = 
3: X it, to, x0; U,, V,l satisfks the condition 

2 I61 E M (2.1) 

(We can confine ourselves to those preset con~okt V, which are defined by measures 
s (dzt)~ pie~w~N~t~t with respect to time). 

We define the preset absorption set tV, (t*, 6) (at an instant @ > t*) as the set of 
all those points 5 = q,, for which process (1.1) preset-absorbs the target f%! at the instant 
6 from the position {t*, 2~~). 

It is possible to verify that the seti w,, (t, @) are closed for ati Ss < t < 4, More- 

over. Fw, (9, 6) = M. It is important for our purpose that the sets ?i?n (t, 6) have 
the following property of strong stability (see DO- 141) : for every value f, E It,, @ f , 
every point X:,. 6~ W, ft*, @), every number A E &I,6 - t*] and every preset 
conad V,, there exists a preset conteoi U,such that at least one motion 3: I tl = 5 1 t, t,, 
x*; U,,, V,] sarfsfies the condition 

X [t* + Al cz W,, (b, + A, +) (2.2) 
III fact, according to f14] fulfillment of the above condition means that the exttemal 

strategy U(6) defined by the sets ($e)(&6)},r,,, determined from the maximum condftion 

minY 
U 

os’f (t, X, u,‘v) $“) jd?r) v (dv)] = maxp min, [~~~~,X~ % u)lr(dufrf~nJ] 

(2.3i 
guarantees for every motion 5 [tl = X [t, t,, r,; U(“), VI for 2, from Wn (to, 8) 
the inclusion of x f t] in W, (t, 6) for all t, & t sg 6, and thus ensures the required 
inclusion (2.1). Here the vector s = ST* - z, where ~9 is the point from W, (t, 6) 
which lies closest to the point X; the prime denotes transposition. 

Note 2.1. It is sufficient that the condition which defines the strong stability pro- 
perty be fulfilled mly for all sufficiently small A > 0 (A < 0 - t,f and for Preset con- 
t&s v, defined by a unique measure v(dvf which remains constant in the half-interval 
t, < t < ta + A. 

we must therefore find the sufficient conditions whore fulfillment means that the sets 

6;cr, (t, @) (to 4 t s 3) are strongly stable. These conditions can be constructed as 
follows. We use the symbol X (t*, a~** t*, V,d (t* = t, + A) m deac the scf an- 
sisting of all the points X = X [t*, t,, Se; V,, U, 1 resulting from all possible choices 



Conditions of encounter in a differential game 751 

of the preset controls U, (t* <,t*). 
Condition 1”. ThesetX (I,, z&t*;. v,*) isconvexforallpositfons{tti~*) 

(t* < 4), all sufficiently small numbers A > 0, and all preset controls Y,’ defined 
by measures y (dv) which are constant with respect to time, t, < t C t* = t*+ A= 

Let the position {t* . z* } be such that the point a!* is not contained in the set 

wll (t*, 6) 1 t* ,( 6). Then there exists a preset control v,* (t* < t < 6) such 
that. Q (x fe, t*, a?*; us, vn*1, Ml > 8 (%*I > 0 (2.4) 
for a&preset controls U,. Here the symbol p fs, M) denotes the distance from the 
point.% to the set M. Further, let the point & E r?l, (t,, 6) and let us choose some 
preset control V,,” defined on the half-interval t, < t < t* by a measure Y (dv) 
constant with respect to the time t . When paired with some preset control q,, (t* &_ 
& t < t*) the chosen preset control Vno generates some motion t it] I z it, t,, t*; 
u,, V,“]. If the point r* = z f t* ] does not occur in W,, (t* , 6), then we continue 
the control ‘v,” onto the entire half-interval f t,, 6) by means of the control Yn* 
satisfying condition (2.4). 

. 

We denote the resulting control V, by the symbol Vno*. But the point I* occurs in the 
set W, (t*, 6) and therefore the preset control Vno* for all e > 0 can be associated 
with a preset control u, * (t* <- t < 6) such that at least one motion 5 [ti = z it, 
t,, z*; IT**, v,““-1 s atisfies the condition z [;$%I E Me, where ML - a is a neigh- 
borhood of the set M. The intersection of the set of such motions chosen in some way 
with the hyperplane t = t* will be denoted by the symbol Ys (t*, s*; p, 2* ; v,“). 

Let Yc* be the closure of the set Y.. The intersection of all Y,* for a > 0 will be 
denoted by the symbol Y”(t,, z*; t* , z* ; vno). 

Condition 2.. The nonempty sets Y* (t*, s,; t* , z* ; vno) are convex and 
semi~ontinuo~ above relative to inclusion with respect to the variation of z* in the 
domain outside W, (t*, 6) for all sufficiently small values of A = t* - t, > 0 . 

The following statement is valid. 
Lemma 2.1. If conditions 1’ and 2’ are fulfilled, the sets W, (t, ti) (t,, < 

< t < 8} are strongly stable sets. 
In tact, if we assume that the lemma is invalid, then there exists a position {t,,, a,& 

a small number A > 0 , and a preset control Vno (t* < t < t* = t, + A) such that the 
closed sets I+‘,(?*, 6) and X(2*, z+, t,; Vnoj do not intersect. This in turn would mean 
that it is possible to construct a mapping z* -* Y*(t+, 4; t*, t*i V,“) of points z* from 
X onto the closed convex subsets Y* from X.. 

It is Clear that the point z* cannot occur in the corresponding set Y*, since this would 
mean that the preset control’ V * n and some preset control G%* (i* ( t < 6) generate 
from this point a motion dt] which comes arbitrarily close to the set Mat the instant 
6. But this cannot happen by virtue of out choice of Vi* from condition (2.4). At the 
same time, by virtue of the fixed-point theorem of PS], the mapping Z+ + Y* which 
we Construct necessarily determines one point x0 which satisfies the condition ran Y+ 
(t+, r,; t*, z*; I’,*). The resulting contradiction proves the lemma. 

The following statement follows from the results of p43 and Lemma 2.1 of the present 
paper. 

Theorem 2. 1. If Conditions 1’ and 2’ are fulfilled and if the point zO lies in 
wry (to9 @>, then the extremal strategy U(e) defined by condition (2.3)guarante~ the 
encounter of object (1.1) with the target z by the instant 6. 
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Note 2.2. In dealing with the preset controls Un and v,, we can avoid the expli- 
Cit use Of limiting transitions from Euler broken lines (1.3) to the motions E 14 by restric- 

ring the CMS of Ft Ccmtsola U,and V, by means of appropriate regularizing conditions 
(e. & see ClSl) and by determining the motions &I directly as the solutions of the cor- 
responding limiting generalized differential equations, On the other hand, in determining 
the motion zftl directly by taking the limita of Euler broken lines (1.3) it is possible to 
ignore reSUictfa on the character of the dependence of ~~~~)~, Ye on t. 

8. Atl intrlfMieaily llarrr objoat. Effective description of the sets 
w, (& 6) and effective verification of the conditions of their strong stability are diffi- 
cult in the general case of a nonlinear equation (2.1). Tbe problem becomes significantly 
simpler if the right side of Eq. (1.1) does not depend explicitly on the phase vector, i. e, 
if the equation of motion is of the form 

dxldt = f (t, u, v) (3.1) 
The following case of an intrinsically linear object (1.1) where the equation of motion 

is linear in z is also reducible to the above case : 

dzldt = A (t)z + f (t, u, 01 (3.2) 

In fact, to reduce Eg, (3.2) to (3.1) we need mqely make the nonsingular linear sub- 
stitution of variables z I 2 (t, e);t, where 2 (t, 6) is the fundamental matrix of 
solutions of the homogeneous equation z’ = A (t) 2. 

Thus, let us consider our problem in the case where the equation of motion is of the 
form (3.11, where the function f (t, u, v} is continuous with respect to ail its arguments. 
Let us make yet another simplifying assumption; specifically, let us assume that the set 
fkf is conveek and bounded. The latter condition is not too important, since for a given 
initial position (to, q,) motions (3. l), (3.2) can attain only a bounded portion of M 
by a finite instant ;i, ; this part of M can be talten as the new traget if the InitialIy pre- 
scribed set M is unbounded. 

The preset absorption set I+, (t, 4) in the case under consideration can be described 
as follows, Along with Eq. (3.1) we consider the ancillary equation 

&l&t = f (z, n, v) - p6 (r - 9) (3.3) 

where the symbol 6 (r) is a delta function and p is an n-dimensional vector restricted 
by the con&don p E M. Let us choose some preset control V, defined by the measure 
Y {dvh (t & z ( $3). (we can limit ourselves to those preset controls which are defined 
by measures piecewise-continuous with respect to time z (see p. 750 and compare Note 
2.1) ). The definition of the set ’ TV, (t, 6) implies that the point x = xlr bebngs to 
this set if and only if for every V, there exists a preset control Undefined by some mea- 
sure p (du), (t < 7 ( 6) and a vector p such that the motion 

x (9 = x (z, t, x*; U,, v?l, P) 

whicfi they generate satisfies the condition z (99 = 0. The motion x (r) Of system 
(3.3) is again defined as the uniform limit of Euler broken lines of the form (1.3) which 
are continuous for z ( 6 but are now constructed for Eq. (3.3) with allowance for the 
terminal jump x @) - 5 (6 - 01 = - P* 

The set of all points g = x (6) generated by the motions 

x (4 = x (7, t, x*, u,, v,, P) 
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for a fixed conuol ir,, and for all possible permissible controls U, and p E M is called 
the “attainability domain” with respect to u for the motion x (v) (3.3) fram the position 
{t, x*} by the instant $. We shall denote such an attainability domain by the symbol 
G (t, x*, 6; %‘,). It is a bounded.convex, and closed set. 

By virtue of the foregoing, the point &lies in the set I%‘,, (t, 6) if and only if the 
domain G(t, x*, @; V,) contains the point q = 0 for every chosen preset control 
V, . To describe W,, (t, Q) we must repeat our argument for Eq. (3.1) linear in ZL and 
u (e. g. see p2. 1’7j); we need merely replace the ordinary controls u (7) and u (z) by 
the measures p (du), and v (d& which represent them in this case. 

The bounded, convex. and closed set G (t, CC*, 6; v,) is the intersection flBJ of its 
support half-spaces % @, x*, 6, 1; V,) - l’q > 0 (3.4) 

whe= x (t, a+ 6, 1; V,) is the support function of the set G , and I is an arbitrary 
n-dimensional vector. We have 

x (t, x*, 6, I; V,) = max I’q = PEG 

where the upper face is taken over all the measures lo (&A)~ piecewise-constant with 
respect to the time t and where p E M. Thus, the point z* lies in I$‘, ft, 8) if and 
only if the point q = 0 satisfies inequality (3.4) for all vectors 1 and for all measures 
v(dv), piecewise-continuous with respect to time which define the preset control v,. 
We therefore infer from (3.4) and (3.5) that the set w,, (t, 6) is described by the ine- 
quality 

ix& sup, [& i l’f (z, u, D) p (W v (WV ] + maxp (- b)+l’~, > 0 (3.6) 

which must hold for every point z* from W, (t, fj) (and only for such points) for every 
vector 2. 

We infer from (3.6) that W, (t, a) is a hounded, convex, and closed set. Its e-neigh- 
borhood is in turn described by the inequality 

Z’f (2, 4 V) p Mu), v (du), ] + maxp (- 2’~) -!- 2’2, a 0 

This implies that if the point x,does not lie in the set w,., (t, 6) then its distance 
e = p (x*, wn)fcom W;, (t, fi) is defined by the inequality 

8 

mir+ltH..t (in& sup* 
R! 

l’f (z, u, u) p (du)t v (WV1 -!- 

+ maxp (- l’p) t 1’2 * + P (h Wn (h W)) = 0 (3.7) 

The following statement is valid. 
Theorem 3.1. If the minimum in the left side of (3.7) under the condition 

P @*9 wn (G @)) > 0 is attained on the unit vector t” and if a+ CZ w, (te, 6), 
then the extremal strategy U(4) (2.3), where s = 11 x*- xl)Z”, guarantees the encounter 
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of object (I. 1) with the target M, 
To prove the theorem we must compute the change in the quantity sA It 1 = p (aa [t), 

“p, 6 6)) in a single step A = ri+l - r$ along the Euler broken line from that sequence 
of the latter which in the limiting case defines the motion 3 [t] itpL z [I, te, Z+ Cc), V]. 

in which we are interested. In view of the continuous variation of the vector 1’ with 
changes in position and the fact that ti Witi, xl+d) satisfies maximum condition (2.3) 
for t = ri, z = zA [ r( j, we obtain the following estimate (see the analogous cases in 
02, 171) from (3.7) for eJ irrj > 0 : 

8A [+i + Al -e& (Tij d 0 (A) (3.8) 

where the symbol a(A) denotes an fnfinitesimai of higher order than A, Estimate (3.8) 
implies that the motion z(t), which is the limit of the curves ~$1 as Aj~ 0, cannot 
leave the set IV,&, ti) as t varies from t = to to t = 8. Hence, the point ~(6) lies in 
the set W,(e, 6) coincident with M, Q. E, D. 

Note 3.1. In this case the vector s in condition c2.3) is unique, since the sets 
IV,&, ~9) are convex. (As already noted, if the vector P is unique, it is colinear with the 
vector s). But this unique vector s varies ~ti~uo~ly with variation of the point z 
This means that the convex setp l&d= +$ which define the strategy vi*) are weakty 
semicontinuous above relative to Inclusion with respect to the variables i and t (with 
respect to t on the right. since strongly stable sets W,(t, @are continuous in t on the 
right (e. g. see a2. 173). This enables us to formalize the motion z[t] in the form of 
absolutely continuous solutfcns of the appropriate differential equations in contingencies 

In such cases the general statement correspondiug to Theorem 2.1 can be formulated 

as follows: if the sets Wn($, fj) (to < t Q @) are convex and strongly stable (specifically, 
if Conditions 1’ and 2’ are fulfilled) and if the point to ~‘iW,(r,, 6), then extremal stra- 
tegy (2.3) guarantees encounter with M for any motion d[t] = z[t, to, 2,; UC”, F’l which 
is a solution of equation in contingencies (3.9) whatever the saatcgy ‘Y defined by the 
measure vfd& piecewise-continuous (with respect to time t) . Theorem 3.1 itself can 
now be formulated as foliows: if z, m W, (to, @and if the mmimum in the left side of 

(3.7) Is attained on a unique vector e under the condition p(z,, IV&, +)) > 0 , then 
the extremal strategy v@) (2.3) guarantees encounter with M for every motion &l =L 
= z[ t, to,zo; tie), VI which is a solution of equation in contingencies (3.9) whatever 
the strategy Y defined by the measure v(&$ piecewise-continuous with respect to the 
time t. 

rn the general case where the vector J in condition (2.3) is not unique, this formali- 
zation runs up against the following obstacle. The sets &&“) (d~))~+,, obtained from 

condition f’2.3) may turn out to be nonconvex. If they are complemented up to their 

convex shells (#“’ (d&j)* lt.+, then, generally speaking, not all of the solutions &I of 

the resulting equations in contingencies (3.9) can be guided onto the set M, but only 

those solutions (constructive solutions) which are obtainable by taking the limits of 

Euler broken lines (1.g . 
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